CO2-fangst
Fangst og lagring af CO2 er en velafprøvet metode og teknologi til at nedbringe CO2-udledninger. I Danmark mangler vi imidlertid stadig meget viden om, hvordan vi bedst kan lagre og evt. bruge indfanget CO2. Og hvad er de juridiske, politiske og samfundsmæssige udfordringer? Det undersøger vi i vores forskningsnetværk "Carbon Capture, Utilization and Storage".
Selvom verdenssamfundet har klare intentioner om at nedbringe CO2-udledningerne, så vil vi i mange år fremover stadig lukke betydelige mængder CO2 ud i atmosfæren.
Men hvad nu, hvis man kan fange CO2'en og gemme den væk eller ligefrem bruge den? Det er grundlæggende, hvad CCUS (Carbon Capture, Utilization and Storage) går ud på. Og ifølge blandt andre IPCC (FN's klimapanel) er det en nødvendig metode, for at vi kan nå målene i Paris-aftalen.
I vores forskningsnetværk "Carbon Capture, Utilization and Storage" undersøger vi mulighederne for at bruge CCUS som led i den grønne omstilling.
CCUS som grøn løsning
Der er flere måde, hvorpå man kan indfange CO2.
Biologisk kulstofindfangning og -lagring
Den naturlige fotosyntese fungerer allerede som CO2-fangst, når planter omdanner kulstof til ilt og organisk stof. Biomasse og økosystemer bidrager således naturligt til kulstoflagring. Derfor ser vi i vores forskning nærmere på, hvordan vi kan dyrke og forvalte økosystemer for at optimere kulstoflagringen, herunder gennem skovrejsning. Vi undersøger også, hvordan vi kan bevare naturligt kulstofindhold i jorden. Endelig ser vi på, hvordan plantemateriale i biobaserede produkter til brug i bygninger og infrastruktur kan være med til at lagre kulstof. Sådanne produkter kan være med til at erstatte energiintensive produkter som stål, beton og mineraluld, der er fremstillet af begrænsede, ikke-fornyelige ressourcer.
Geologisk kulstofindfangning og -lagring
En anden metode er at lagre CO2 under jorden. Geologiske miljøer og materialer giver nogle af de største og mest robuste muligheder for permanent CO2-lagring.
Helt konkret fungerer CO2-lagring i jorden ved, at man opsamler røgen fra for eksempel en industri, hvor koncentrationen af kulstof er stor. Derefter udskiller man kulstoffet fra røgen, komprimerer det og enten genbruger det (for eksempel til produktion af særlige kemiske forbindelser og på sigt også til grønne brændstoffer ved hjælp af Power-to-X) eller pumper det ned i undergrunden i et egnet reservoir.
Spørgsmålet er, hvordan man bedst tilpasser denne metode til danske forhold? Kan oliefelter i Nordsøen omdannes til CO2-lagringssteder? Hvilke områder på land er optimale lagringssteder, og hvad afgør samfundets accept af sådanne løsninger? Hvordan kan lagringssteder effektivt og økonomisk overvåges for at sikre sikker lagring? Hvad er de juridiske overvejelser relateret til regulering af CO2-lagring? Og hvordan kan lagring af CO2 mere generelt definere omfanget af grønne politikker for omstilling, og dermed i hvilken grad samfund og individer skal ændre forbrugsmønstre og adfærd?
CCUS som grøn løsning på KU
Vores forskningsnetværk Carbon, Capture, Utilization and Storage (CCUS) støtter udvikling og modning af metoder, koncepter og teknologier til at indfange, bruge og lagre CO2, både fra kilder på jorden og fra atmosfæren. Vi fokuserer både på fossile, atmosfæriske og biogene kilder (det vi kan høste fra marker, skove og havet, og som er del af den naturlige kulstofcyklus). Målet er at opnå et kulstofneutralt samfund og på længere sigt et kulstofnegativt samfund, hvor vi trækker mere CO2 ud af atmosfæren, end vi udleder.
Målet er at opnå et kulstofneutralt samfund og på længere sigt et kulstofnegativt samfund, hvor vi trækker mere CO2 ud af atmosfæren, end vi udleder.
Udvikling af teknologier til at fange og lagre CO2 samt øget brug af biomasse og kulstoflagring i naturen kan have konsekvenser for miljø, biodiversitet og vores anvendelse af vores arealer. Teknologien involverer storskala infrastrukturer til transport af CO2 og lagring under jorden, og kan derfor påvirke folks levebrød. Sådanne aspekter skal der fuldt ud tages hånd om for at sikre, at CCUS udføres på en bæredygtig måde. Desuden kan udviklingen og implementeringen af det fulde spektrum af CCUS-løsninger kræve en række reguleringstiltag og muligvis støtteordninger eller andre incitamenter for markedet.
I vores forskningsnetværk kombinerer vi naturvidenskab med en samfunds- og humanitær forståelse, hvor de samfundsmæssige, miljømæssige og økonomiske aspekter er medregnet. Kun på den måde kan vi sikre, at løsningerne til kulstofindfangning og -lagring bliver reelt bæredygtige.
Forskere i netværket
Kresten Anderskouv |
Department of Geosciences and Natural Resource Management |
Faculty of SCIENCE |
Emil Engelund Thybring |
Department of Geosciences and Natural Resource Management |
Faculty of SCIENCE |
Claus Beier | Department of Geosciences and Natural Resource Management |
Faculty of SCIENCE |
Simon Westergaard Lex | Department of Anthropology |
Faculty of Social Sciences |
Lone Søderkvist Kristensen | Department of Geosciences and Natural Resource Management |
Faculty of SCIENCE |
Dorette Müller-Stöver |
Department of Plant and Environmental Sciences |
Faculty of SCIENCE |
Jiwong Lee | Department of Chemistry |
Faculty of SCIENCE |
Niels-Ulrik Frigaard | Department of Biology |
Faculty of SCIENCE |
Lars Tønder |
Department of Political Science |
Faculty of Social Sciences |
Niclas Scott Bentsen | Department of Geosciences and Natural Resource Management |
Faculty of SCIENCE |
Centre for International Law and Governance |
Faculty of Law |
Læs hele beskrivelsen (på engelsk)
Aim
This thematic solution aims to support a fundamental change in how we view, value, and use carbon resources in society. This involves the capture and storage of fossil and biogenic CO2 emissions while simultaneously completely switching from fossil-based to atmospheric-based carbon supplies such as biogenic carbon derived from the natural carbon cycle and the atmosphere.
The thematic solution will support the development and maturation of methods, concepts, and technologies to capture, use and store CO2 from point sources and the atmosphere. The thematic solution focuses on both fossil, atmospheric and biogenic sources for carbon and aims to ensure that we obtain societal carbon neutrality and, in the long run, ensure a carbon-negative society where we efficiently pull CO2 out of the atmosphere. Further, the thematic solution will combine natural science with societal and humanitarian understanding in order to ensure that solutions for carbon capture and storage are truly sustainable in the sense that societal, environmental and economic aspects are taken care of.
Description
The goals of the Paris Agreement can only be achieved with the removal and storage of CO2 (IPCC Sixth Assessment Report). The thematic solution combines all possible sources for carbon removal from the atmosphere and storage as well as the use of carbon in society. The work has 3 main areas:
Biological carbon capture and storage
Natural biological systems capture atmospheric carbon by photosynthesis. Storage in biomass and ecosystems, therefore, naturally contributes to the storage of carbon. The storage is strongly affected by land management options such as plant selection, soil and crop management and the end use of the biomass produced. There are 3 main ways ecosystems and biomass help to store carbon: 1) Ecosystems with long-living standing biomass, such as forests, store carbon in the biomass. Management and expansion of such areas can therefore act to increase carbon storage, e.g. by afforestation. The research activities focus on how we can grow and manage ecosystems to optimize carbon storage, including the use of afforestation. 2) Soils in natural and managed ecosystems store carbon in recalcitrant organic material. This can be naturally by the accumulation of undecomposed carbon in soils and by actively applying and increasing carbon in the soil, for example, via biochar. Research activities focus on the preservation of natural soil carbon content and on all aspects of using biochar in forests and agriculture as a way to increase soil carbon content and carbon storage. And finally, 3) use of plant material to store carbon in society in long-lived, biobased products for use in buildings and infrastructure. Such products can also replace energy-intensive products such as steel, concrete, and mineral wool, which are made from limited, non-renewable resources. The research focus is on plant material characteristics for long-lived use and solutions to reuse, recycle and increase the application areas and lifetime of biomass use in societal applications. Furthermore, biomass can contribute to negative emissions in relation to geological CCS if CO2 from biogenic origin in waste incineration and industrial processes is captured and stored underground.
Geological carbon capture and storage
Geological environments and materials provide some of the largest and most robust options for permanent CO2 storage. Potential solutions include a broad range of concepts at various levels of technological readiness, and all of them involve some level of human intervention in nature or require societal acceptance. Some technologies, such as CO2 storage in the underground, are proven and implemented in other countries but must be adapted to specific conditions in Denmark: Can oil fields in the North Sea be turned into CO2 storage sites? Which areas on land are optimal storage sites, and what determines societal acceptance of such solutions? How can storage sites be effectively and economically monitored to ensure safe storage? Other technologies involve natural processes in which CO2 is captured and incorporated into minerals permanently. Some of these technologies are theoretically well understood but in very early stages of development and therefore require scientific maturation. Others are, at present only concepts that require basic theoretical and experimental testing. The work in this thematic solution involves the scientific maturation of concepts and technologies, from basic to applied research, and investigations of the societal aspects related to CO2 storage. The latter includes juridical considerations related to CO2 storage regulation as well as an examination of how CCS, more generally, might define the scope of green transition policies and, thus, the extent to which communities and individuals need to change patterns of consumption and behaviour.
SSH aspects
Developing CCS technologies and methods and increasing the use of biomass and carbon storage in natural environments may have consequences for land use, the environment and biodiversity, and CCS involving large-scale infrastructures to transport CO2 and storage underground may affect people's livelihoods. Such aspects must be fully taken care of in order to ensure that CCUS is conducted in a sustainable way. Furthermore, the development and implementation of the full range of CCUS solutions may require a range of regulatory and market stimulation actions. Consequently, the thematic solution involves cross-disciplinary research to look at societal and humanitarian aspects as well as environment and biodiversity.